Создан самый тонкий в мире сверхпроводник

Новое открытие научной группы Ивана Бозовича (Ivan Bozovic) позволит теоретикам построить более полные и точные модели высокотемпературной сверхпроводимости (фото Brookhaven National Laboratory).

Сверхпроводящий слой вещества толщиной менее одного нанометра впервые смогли получить физики из Национальной лаборатории Брукхэвен (Brookhaven National Laboratory). Не меньшей проблемой для учёных был поиск доказательств того, что именно этот единичный слой обладает столь нужными свойствами.

Долгое время теоретики спорили, может ли вообще сверхпроводимость существовать в столь малых объёмах. Многие научные группы пытались получить очень тонкие плёнки, например из купратов (cuprate), материалов, основой которых служили оксиды меди. Однако результат был по большей части один и тот же: слишком большая шероховатость поверхности плёнки сводила все усилия на нет.

«Мы пошли другим путём», — рассказывает в пресс-релизе лаборатории Бозович, руководивший новым исследованием. Он и его коллеги тоже создавали слои веществ, но при этом формировали многослойные структуры. Таким методом в прошлом году они "утрамбовали" сверхпроводимость в слой толщиной 1-2 нанометра. Теперь же учёные подняли планку ещё выше.

Для создания плёнок американские учёные использовали метод молекулярно-лучевой эпитаксии (molecular beam epitaxy) (иллюстрация Brookhaven National Laboratory).

Исследователи собрали шесть слоёв непроводящего оксида меди-лантана (La2CuO4), сверху нанесли ещё шесть пластов металлического оксида меди-лантана-стронция (La1,55Sr0,45CuO4). Электроны, протекающие между этими двумя оксидами, спонтанно образовали узкий сверхпроводящий участок. Чтобы определить, на каком именно уровне «пирога» он рождается, физики создали несколько вариантов системы, разместив в разных слоях подавляющий сверхпроводимость цинк.

«Испортив» таким способом один из слоёв, учёные заметили, что критическая температура, при которой в нём обеспечивается сверхпроводимость, упала с 32 до 18 кельвинов. Ничего подобного при изменении структуры других уровней не происходило.

Таким образом, получается, что высокотемпературная сверхпроводимость (при 32 кельвинах или -241 °C) возникла во втором пласте оксида лантана-меди, толщина которого составляла всего 0,66 нанометра. До этого считалось, что такая «двумерная» сверхпроводимость будет нестабильной. Иван и его коллеги доказали, что это не так.

Учёные отмечают, что чем тоньше слой материала, тем выше температура его перехода в сверхпроводящее состояние. В данном случае толщина каждого слоя не превышала три элементарные ячейки (иллюстрация Brookhaven National Laboratory).

Конечно, соседние слои снабжают главную рабочую лошадку электронами, но, по мнению Бозовича, то же самое происходило бы и в их отсутствие, если бы на подмогу пришло внешнее электрическое поле.

«Статичные электрические поля не могут проникать внутрь хороших проводников глубже, чем на один нанометр», — рассказывает Бозович. Именно поэтому нужны столь тонкие сверхпроводники. Их можно будет использовать в электронике.

Статья авторов открытия опубликована в журнале Science. Читайте также о сверхпроводнике полуторного рода и о сверхпроводимости спиновых триплетов, а ещё о том, как очаги сверхпроводимости были обнаружены при температуре выше критической.



Учёные придумали способы борьбы с эффектом чайника

29 октября 2009

Создан оптический пинцет для вирусов

23 октября 2009

Впервые свет и звук пойманы в одном кристалле

21 октября 2009

Физики оценили число параллельных вселенных

20 октября 2009

Впервые создана чёрная дыра для света

16 октября 2009