
Молодая американская компания обещает до конца года вывести на рынок камеру, которая революционизирует фотографию. Заявление амбициозное. Но прототип уже существует, и создан он после многолетних исследований.
Основатель стартапа Lytro из Кремниевой долины, глава компании и изобретатель экзотической камеры Рен Нг (Ren Ng), утверждает: «Наша миссия заключается в изменении фотографии навсегда, обычные камеры уйдут в прошлое».
Если верить Lytro, то пользователям не придётся беспокоиться о подборе времени экспозиции, диафрагмы, фокусировки и должного освещения с новой камерой. И дело не в автоматике, которая, как можно подумать, сама устанавливает указанные выше параметры перед съёмкой. Нет, новинке просто не нужны такие настройки, чтобы успешно снять сюжет.
Камера Lytro готова запечатлеть любую сцену менее чем через секунду после включения аппарата. Да, у новой камеры нет задержки между «сном» и собственно моментом спуска. Не нужно нажимать кнопку наполовину и ждать пока аппарат наведёт фокусировку. Ею Lytro вовсе не занимается. Но после происходит «чудо».

Используя полученный при съёмке файл, специальная программа может произвольно менять глубину резкости и фокусировку кадра. Достаточно просто щёлкнуть мышкой на нужном объекте — предмете первого, второго или третьего плана, как эти участки становятся резкими, а другие размываются.
Причём речь не идёт об искусственном «замыливании» в стиле фотошопа. Все проявляющиеся и вновь уплывающие в туман изображения — реальные. Всё работает так, словно вы сделали в один момент несколько десятков, а то и сотен кадров с фокусировкой, установленной на разное расстояние.
Как происходит перефокусировка после съёмки — можно опробовать самому в картинной галерее Lytro, а ещё посмотреть в ролике ниже.
Секрет технологии заключается в том, что новая камера записывает в память так называемое световое поле (light field). Если говорить упрощённо, световое поле полностью определяет вид сцены, а представить его можно как совокупность всех лучей, проходящих от всех точек окружающей обстановки во всех направлениях.

В новой камере в качестве датчика задействован спроектированный компанией сенсор светового поля. В отличие от обычной матрицы он получает и сохраняет в цифровом снимке информацию не только о яркости и цвете прошедших через объектив лучей, но и о направлении, с которого они пришли. Это последняя информация теряется в обычной камере, поясняет Lytro.

В результате записанные светочувствительной матрицей данные позволяют за счёт программного алгоритма не только менять глубину фокусировки в конечном кадре, но и в некоторых пределах смещать перспективу всей сцены и даже плавно переходить от 2D к 3D. Звучит фантастично, но именно такую технику обещает вывести на рынок компания Lytro.

Если копнуть глубже, в технологии открываются любопытные подробности. Скажем, свой сенсор светового поля Нг придумал не на пустом месте. В своей работе Рен отталкивался от принципа так называемой пленоптической камеры (plenoptic camera).
Учёным такая камера известна уже много лет, но до сих пор кочует как эксперимент из института в институт. До потребительского рынка она так и не добралась.
Задача пленоптической камеры заключается в получении намного более полной информации о сцене, нежели это возможно с камерой классической. Кстати, попытки такой всеохватывающей съёмки предпринимались не раз. Но в отличие, к примеру, от похожей работы Mitsubishi Electric, где для захвата светового поля применялось сочетание сенсора и кодирующей маски, в пленоптической камере между основным объективом и матрицей размещается массив из большого множества микролинз.
Каждая такая линза передаёт свет на относительно небольшую группу пикселей в приёмной матрице. Все вместе они формируют мозаику, содержащую больше данных о световых волнах, чем кажется на поверхностный взгляд.

Взяв исходные пиксели, путём решения довольно сложных уравнений можно получить представление о сцене в большем разрешении, чем имеется в отдельном фрагменте мозаики.
При этом расстояние от объектива до снимаемых объектов не играет никакой роли. Зная законы распространения света, можно подобрать такую обработку, что каждый предмет нарисуется точно в фокусе.

Однако у пленоптических камер есть проблемы. Скажем, размер микролинз и их соотношение с пикселями матрицы, лежащей внизу, расстояние между микролинзами и матрицей — все эти параметры сочетаются между собой так, что вам сложно получить хорошую фокусировку одновременно с высоким разрешением картинки под каждой микролинзой. Что-то удаётся вытянуть, что-то пропадает.
При этом важно, что набор таких миниатюрных изображений несёт информацию не только о яркости и цветах разных точек, но и о расстоянии от камеры до той или иной части сцены. Что будет, если все эти знания объединить? Если упрощать задачу, вопрос перед авторами технологии стоял такой: можно ли из сырых и грубых изображений под микролинзами вычислить всю обстановку со всеми её деталями?
Чтобы ответить на него, Нг подвёл под работу плеоптической камеры целую теорию о различных способах представления световых полей и различных математических преобразованиях с ними, а в результате спроектировал свой аппарат (с сопутствующим софтом), который способен на описанные выше трюки.
(Подробнее о научной части проекта можно узнать в PDF-документе, а немного деталей из истории появления Lytro и предшествовавшей ей работе специалистов Стэнфорда — в блоге венчурной компании K9, помогавшей Рену осуществить мечту.)

Камера Lytro работает при слабом освещении без вспышки, а ещё она может производить 3D-фотографии с одним объективом, приводит PC World слова представителей компании.
С трёхмерностью, честно скажем, не всё понятно. Чтобы её получить, нужно снимать объект хотя бы с двух точек зрения. Вероятно, здесь за счёт той самой решётки микролинз можно отснять сцену так, будто мы располагаем двумя объективами.
Расстояние между ними, в данном случае, это диаметр основного объектива. Деталей, однако, Lytro не раскрывает, как и не показывает пока трёхмерные «Lytro-снимки».
Увы, остаются неясными многие аспекты работы камеры и софта, но главное — нет ответа на вопрос, какой же конечный продукт американцы намерены вывести на рынок?
Не указаны ни точная дата появления Lytro в продаже, ни цена, ни даже форм-фактор новинки (будет ли это «мыльница» или увесистая «зеркалка»). Так что желающим приобщиться к революции в фотографии следует ещё немного подождать.
Но откровенно жёлтые и бредовые сообщения из мира техники и науки мы отсекаем. Не знаю, почему вы так набросились на эту несчастную камеру, по-моему тут всё более менее нормально и правдоподобно.
регистрация направления распространения света в какой-то степени равносильна наращиванию числа пикселей на принимающей матрице или увеличению ее светочувствительности (из чего-то же надо извлекать дополнительную информацию). и если это предположение верно, то у камеры для одного снимка должна быть довольно длительная выдержка, сопоставимая с длительностью нескольких снимков
Кстати как именно пишется направление понять невозможно — лучи на пиксель приходят с разных направлений. Какое из них записывается?
1. Вы снимаете фото с максимальным разрешением. По стандарту RGB — это 256х256х256 бит.
2. теперь допустим вы хотите внести расстояние до этих точек, т.е вы имеете ещё одну картинку, в которой вместо цвета записано расстояние. Соответственно получаем, при градации растояния в 1 миллиметр, расстояние более чем в 16 километров. А ёмкость-то всего увеличилась в два раза.
Думаю, что концепт является концептом больше потому, что он еще далек, очень далек от финальной стадии.
Если это будет удобный и недорогой продукт, то он будет очень хорошо покупаться.
Я думаю, появится. В этой сфере всё очень быстро прогрессирует.
Но идея — не нова. (Я считаю, большенство людей с зеркальной камерой покупают её как хобби, что бы «поиграться». Думаю процент купивших зеркальную камеру, который так или иначе работает со снимками и зарабатывает на этом, меньше 5. Потребительский рынок на новые зеркальные камеры развит, народ покупает — а что ещё нужно? По-этому, вопрос в том, может ли такая камера занять достаточную его (рынка) часть).
Слишком обширное поле предположений о сути процесса ПОСЛЕ записи снимка.
При этом прелесть заключается в том, что настройка такой оптики может быть большей частью програмным продуктом по некоторым «тестовым засветкам».
Понятно, что при достаточно большом в поперечном сечении объектива, мы получаем аналог 3-D естественным образом, на различии в изображениях в центре и на периферии.
Математически, пожалуй, это проще реализовать при помощи Быстрого Фурье-преобразования.
Новые технические возможности порождают и новые поводы для творчества или если муза позовет — искусства.