Рентгеновский микроскоп взорвал лазером объекты наблюдения

Это только малая часть установки FLASH, позволившей получить необычные снимки (фото с сайта de.wikipedia.org).

Новый способ получения детальных изображений вирусов, бактерий и даже крупных органических молекул открыли учёные из США, Германии и Швеции. Они научились фотографировать тела нанометрового масштаба при помощи мощного ультракороткого импульса рентгеновского лазера. И не беда, что через несколько фемтосекунд объект съёмки просто исчезает, разлетевшись во все стороны облачком плазмы.

Об этом впечатляющем эксперименте поведала в последнем выпуске Nature Physics международная группа учёных во главе с Генри Чепменом (Henry Chapman) из Ливерморской национальной лаборатории (LLNL) и Яносом Хайду (Janos Hajdu) из университета Уппсалы (Uppsala University).

В эксперименте был задействован сравнительно новый (построенный в 2004 году) лазер на свободных электронах FLASH германской электронно-синхротронной лаборатории (DESY) в Гамбурге.

Вверху: снимок дифракционной картины, отражающий структуру микроскопического объекта. Внизу: тот же объект, но отснятый с опозданием, то есть уже взорванный лазером — дифракционная картина совсем иная (фотографии H. N. Chapman).

Кстати, принцип его работы вы можете узнать из этой новости про рекордный американский лазер аналогичного типа.

Проведённую недавно фотосъёмку можно назвать фотографией с самой короткой выдержкой: импульс рентгеновского лазера (с длиной волны 32 нанометра) длился всего 25 фемтосекунд. Луч проходил через объект съёмки, вкраплённый в мембрану толщиной всего 3 микрометра.

Энергия лазерного пульса нагревала образец приблизительно до 60 тысяч градусов Кельвина, так что он тут же испарялся.

Однако до того, как объект разлетался облачком плазмы, учёные ухитрялись зафиксировать дифракционную картину, по которой можно было точно восстановить «портрет» образца и его структуру.

Полученные в результате такой обработки чёткие изображения микроскопических объектов (их разрешение составило 50 нанометров) показали, что съёмка происходила действительно до того, как рентгеновский лазер успевал нанести повреждение фотографируемому объекту.

Слева: упрощённая схема эксперимента, приведённая в релизе ливерморской лаборатории. Общий принцип на удивление прост — импульс рентгеновского лазера рассеивается на объекте и прежде, чем объект взорвётся, успевает донести его образ до «фотоаппарата». Справа: а судя по схеме, приведённой лабораторией DESY, в опыте была задействована ещё некая наклонная полупрозрачная пластина, направлявшая рассеянный пучок на фотоприёмник (иллюстрации Lawrence Livermore National Laboratory и H. N. Chapman).

Предыдущие теоретические исследования предсказали, что можно получать образец дифракции от непрозрачных объектов. «Но оставались два важных вопроса, — говорит Хайду. — Получится ли изображение, поддающееся толкованию, от единственного и очень короткого импульса; и действительно ли дифракция передаст информацию о структуре объекта, прежде чем он будет разрушен? В нашем эксперименте мы впервые проверили всё это».

И, что самое интересное, возможности нового метода съёмки далеко не исчерпаны.

Траектории атомов, вычисленные гидродинамической моделью, показывают белок с поперечником 2 нанометра, взрывающийся после того, как его облучили 20-фемтосекундным рентгеновским импульсом мощностью 12-килоэлектронвольт с диаметром луча 0,1 нанометра. Модели указывают, что изображение атомарного разрешения может быть достигнуто с импульсом длительностью до 20 фемтосекунд. Они также показывают, что молекулы воды, прицепленные к белку, замедляют его разрушение так, что и более длинные импульсы могут использоваться для съёмки. Масштабная линейка внизу — фемтосекунды (фемто — 10-15). Кривая показывает мощность импульса (иллюстрация Lawrence Livermore National Laboratory).

Чтобы получить изображения больших молекул с атомарным разрешением, такие эксперименты надо будет провести, используя лучи с ещё более короткими длинами волны, то есть применив не мягкий рентген, а жёсткий.

Это лучи вроде тех, которые будут генерироваться с 2009 года на строящейся сейчас установке «Линейный источник когерентного света» (Linac Coherent Light Source — LCLS) в Стэнфорде или на европейском рентгеновском лазере XFEL, возводимом здесь же, в Гамбурге (он должен заработать в 2013-м).

Так как новый метод, продемонстрированный в данном эксперименте, не требует никакого оптического формирования изображения (фактически у физиков получился безлинзовый микроскоп), он может быть расширен на эти лазеры с жёстким рентгеном, для которого никаких линз пока, вроде, не существует.

Ожидается, что новый рентгеновский лазер XFEL сможет даже снимать видеоролики с химическими реакциями между отдельными молекулами. Пунктирная линия — поток молекул, красным и синим показаны лучи лазера. Это упрощённая схема опыта (иллюстрация DESY).

Развитие же и внедрение в практику исследований такой экзотической фотографии создаст уникальные возможности для изучения структуры и динамики частиц нанометрового масштаба, включая большие биологические молекулы, без потребности в их предварительной кристаллизации, необходимой при обычном рентгеновском структурном анализе.

А это обещает революционизировать исследования структур веществ во многих областях науки (материаловедении, например), включая и биологию, и биохимию. Ведь здесь для новых исследований требуется очень высокое разрешение съёмки — как пространственное, так и временное.



Движение молекул впервые снято на видео

10 ноября 2006

Белок-маяк высвечивает тайную жизнь генов

31 марта 2006

Портрет атомов заставил физиков пойти на всё

28 октября 2005

Выполнен стоп-кадр столкновения атомов

24 октября 2005

Получено оптическое разрешение выше длины применённой волны света

26 апреля 2005