Полуживой робот с биологическим мозгом приоткроет тайны сознания

Gordon учится не натыкаться на препятствия. Специальной программы для этого у него нет. Фактически обучение происходит примерно так, как оно идёт у восьмимесячного, допустим, малыша. Ведь Gordon — частично живой (кадр University of Reading).

Британцы построили робота по имени «Гордон» (Gordon), который управляется исключительно конгломератом из десятков тысяч крысиных нейронов. Жутковатая смесь живой материи и железа заставляет задуматься над вопросами: «Что есть мысль?» и «Что есть память?» Ведь сфера данного опыта вовсе не робототехника, а нейронаука.

При помощи этой необычной машины исследователи намерены лучше понять, как формируются воспоминания в мозге живых существ и как происходит обучение.

Так что крысобот Gordon – это не новейшая разведывательная система или прообраз ужасных киборгов будущего, а опытная площадка, которая должна оказаться куда более интересной (и полезной) для биологов, нежели для инженеров-компьютерщиков.

Одна из ключевых фигур проекта — профессор Кевин Уорвик (Kevin Warwick) из университета Рединга (University of Reading).

Кевин — всемирно известная личность (иной раз — скандально известная). Он является руководителем группы, создавшей в своё время немало экзотических кибернетических систем.

Кевин Уорвик — пионер исследований по интеграции электроники и живых систем; первый «киборг», внедривший себе микрочип, напрямую связавший учёного с бытовой техникой в его доме; пропагандист широкого внедрения чипов-имплантатов и автор ряда работ, предрекающих «восход» расы разумных роботов и возможную печальную судьбу самого человечества (кадр University of Reading).

Gordon выступает новобранцем в этой экспериментальной армии. Его мозг представляет собой специальное устройство, в котором живут и развиваются (благодаря питательной среде) крысиные нейроны.

Заметим, Gordon — не первый бот с крысиными нейронами. К примеру, мы рассказывали о крошке Hybrot ещё в 2003 году. И в том же году создатели Hybrot построили киборга-художника, рисовавшего картины, которые «снились» крысиному мозгу, помещённому в чашку Петри.

Новый британский робот с армией живых нейронов вместо мозгов (в руке исследователя — устройство для их размещения) можно назвать искусственно созданным живым существом. С известной натяжкой, разумеется (фото University of Reading).

Другое дело, что каждый раз отличны детали реализации замысла.

Например, нужно упомянуть общее число включённых в Гордона живых нейронов: их там насчитывается от 50 до 100 тысяч!

А это не просто рекорд. Столь внушительное количество позволяет говорить о качестве эксперимента, о том, что можно будет извлечь из наблюдений за таким «существом».

Нейроны для робота учёные получили из эмбрионов крыс. Клетки разъединили при помощи раствора ферментов и высадили на квадратной схеме, содержащей 60 электродов.

Сторона этой мультиэлектродной решётки (MEA) равна 8 сантиметрам.

Электроды служат для двухсторонней связи нейронного образования и электронной схемы, которая, в свою очередь, командует телом небольшого робота через интерфейс Bluetooth.

Не исключено, что полученные при помощи «Гордона» знания помогут учёным лучше разобраться и с механизмом нейродегенеративных заболеваний вроде болезней Альцгеймера или Паркинсона, — утверждают сами исследователи. На фото — крысиные нейроны на поверхности схемы (кадр University of Reading).

Посредством массива контактов живая ткань получает сигналы от датчиков робота, передающих информацию об окружающей среде, и, в свою очередь, передаёт сигналы на колёса Гордона.

Кроме импульсов, идущих с крысиного «почтимозга» (это всё же не полноценный головной мозг), у робота нет никаких управляющих средств. Ни человек, ни компьютер в поведение машины не вмешиваются.

Авторы эксперимента говорят, что в течение 24 часов после пересадки на площадку с электродами нейроны начали посылать друг другу нервные сигналы. Уже в течение первой недели учёные наблюдали несколько вспышек активности нейронов, напоминающих работу этих клеток в настоящем мозге животного.

Ключ к успеху опыта — возможность посылать электрические импульсы, воспринимаемые культурой клеток как естественные, и, соответственно, принимать импульсы, производимые ею. На снимке — пробирка с нейронами (белый кружок в центре), подсоединённая к считывающему устройству (кадр University of Reading).

Но без внешней стимуляции такая группа нейронов через несколько месяцев погибнет, поясняют исследователи. Потому специалисты приступили к обучению машины. Они попробуют воздействовать на неё различными внешними раздражителями, чтобы посмотреть, как будет реагировать сообщество клеток.

В некоторой степени Gordon обучает сам себя. Когда он натыкается на стену, в крысиный мозг поступает импульс от датчиков. При повторе ситуации у робота формируется нечто, что можно назвать опытом.

Чтобы помочь этому процессу, исследователи используют различные химические вещества, которые усиливают или тормозят формирование нервных связей в ходе выполнения тех или иных действий.

Gordon оснащён сенсорами, определяющими расстояние до объектов. Но эти данные не обдумываются компьютером, как у других ездящих ботов, а преобразуются в импульсы, посылаемые крысиному мозгу (кадр University of Reading).

Ещё бóльшие перспективы открывает возможность оснащения одного единственного бота Gordon сразу несколькими крысиными мозгами. Его конструкция предусматривает крепление нескольких устройств с MEA, поддерживающих свой обособленный коллектив нейронов.

Уорвик и его коллеги полагают, что наблюдение за развитием полуживого робота поможет им что-нибудь узнать и о работе мозга Homo sapiens. Ведь различия между мозгом крысы и мозгом человека по большей мере количественные, а не качественные. У крысы в голове трудится один миллион нейронов, а у человека — 100 миллиардов.

«Это упрощённая версия того, что происходит в человеческом мозге, — характеризует Уорвик своё новое детище, — в которой мы можем увидеть и проконтролировать основные характеристики так, как нам нужно».

Бен Уолли (Ben Whalley), участник проекта, поясняет, что поиск «логического мостика» между активностью отдельных нейронов и сложным поведением организма как результатом «коллективного творчества» нервных клеток является одним из фундаментальных вопросов для нейронауки (кадр University of Reading).

В многочисленных экспериментах прошлого не раз проводился анализ активности групп клеток в мозге живых существ. А в опытах, рассматривавших поведение животных в тех или иных ситуациях, биологи соотносили реакцию организма с «входными данными».

Но вот что происходит на промежуточном уровне? Где-то между одним-двумя нейронами, получившими сигнал и передавшими его дальше и организмом в целом?

Упрощённая модель организма, которой по сути является Gordon, предоставляет экспериментаторам возможность увидеть такую связь.

А что из этого выйдет? Наверное, на разбор и интерпретацию результатов экзотического эксперимента у специалистов уйдёт не один год.



Синестетики слышат шум на движущейся картинке

12 августа 2008

Гиппокамп пожилых не запоминает события дня

30 июля 2008

Японцы сконструировали робота-леща

28 июля 2008

Миндалина поможет стать смелым за несколько дней

24 июля 2008

Тактильные иллюзии расширили границы самообмана мозга

24 июля 2008