Серебряные линзы делают свет для микросхем короче себя самого

Предел производительности обусловлен неумолимыми физическими причинами: в стандартных условиях у кремния уже при размерности около 10 нанометров начинают проявляться квантовые эффекты и «течёт» электрический заряд. Но до 10 нанометров ещё необходимо добраться. Именно это и обещают нам инженеры из Беркли (иллюстрация с сайта howstuffworks.com/Guy Crittenden/Digital Vision).

До каких пор транзисторы будут ужиматься в размерах? Уже давно учёные задаются этим вопросом, подстёгиваемые постоянным ростом требований к производительности компьютеров. Трудолюбивые американцы китайского происхождения не погнались за квантовыми кубитами в небе, а использовали вполне земные технологии для достижения впечатляющей наноточности.

О новом перспективном способе производства интегральных микросхем сообщает группа разработчиков из Беркли (UC Berkeley). Отчёт об этой работе опубликован в журнале Nature Nanotechnology.

Технология представляет собой альтернативу традиционной оптической печати, ныне применяемой подавляющим большинством производителей микроэлектроники, и состоит в улучшении характеристик передачи света посредством его сжатия.

Упрощённая модель печати интегральной микросхемы. Кремниевую подложку покрывают резистивным материалом, чувствительным только к ультрафиолетовому излучению. Следующим слоем накладывают так называемую диффузионную маску. При облучении области под маской остаются «транзисторными», формируя необходимый рисунок. Потом всё это дело в несколько этапов обрабатывают специальными химикалиями – и микросхема готова (иллюстрация Nature).

Зачём вообще нужна эта передача света? Почему её необходимо улучшать?

Оптическая литография в целом похожа на обычное фотографирование: облучение светочувствительного материала формирует изображение, которое потом проявляется.

«Работает довольно неплохо, — поясняет один из авторов изобретения Лян Пань (Liang Pan). — Однако разрешение ограничено фундаментальными свойствами света: для минимизации размеров наносимых элементов необходимо сокращать длину волны».

И вот здесь как раз возникают сложности – в виде дифракционных эффектов. Дело в том, что при укорачивании электромагнитным излучением становится тяжелее управлять.

Зависит дифракция от соотношения между длиной волны и размером неоднородностей среды (либо неоднородностей структуры самого излучения). Другими словами, чем короче, тем выше риск непредвиденной трансформации – вразрез с генеральной линией партии.

Дифракция может существенно изменить параметры волны (иллюстрация с сайта smeter.net).

На сегодняшний день минимальный размер традиционного фокусирования составляет 30-35 нанометров – причём достигнут он ценой невероятных усилий и гигантских затрат. Новая же методика, по уверениям учёных, способна не только непринуждённо взять текущий нанобарьер, но и значительно превзойти его. При умеренных расходах на производство.

Технология называется плазмонной литографией (plasmonic lithography): она предусматривает гравировку схемы с помощью специальной головки – плазмонной линзы, – через которую пропускается «традиционный» ультрафиолетовый свет. Кремниевая подложка при этом вращается, так что весь процесс напоминает проигрывание виниловой пластинки, где линза является «иглой».

Впрочем, аналоговые ассоциации на этом заканчиваются: плазмоника позволяет опуститься до миниатюрных масштабов – в масштабах промышленных. По крайней мере, так думают разработчики.

«Мы сможем уменьшить размер существующих процессоров в 10 раз, при выигрыше в мощности, — утверждает руководитель исследования Сян Чжан (Xiang Zhang). – Если же вдруг кто захочет себе харды с ультравысокой плотностью записи, от 10 до 100 раз превышающей текущие показатели, то и это нам будет по силам».

Металлическая «игла» фокусирует свет, используя возбуждённые электроны – плазмоны – на поверхности линзы (иллюстрация Liang Pan, Cheng Sun/UC Berkeley).

Инженеры из Беркли обошли дифракцию, используя проводящие свойства металлов, на поверхности которых всегда найдётся парочка свободных электронов, – они начинают колебаться при соударении с фотонами. Эти колебания известны как эванесцентные или исчезающие волны (evanescent waves), и они как бы сокращают свет до длины меньшей, чем она может быть у оптической волны.

Чтобы реализовать «исчезающие» эффекты на практике, потребовались серебряные плазмонные линзы, уложенные концентрическими слоями, – они способны фокусировать свет до точки диаметром 100 нанометров.

В итоге удалось нанести на подложку линейные паттерны шириной 80 нанометров при скорости сканирования 12 м/с. Казалось бы, не так круто, если учесть, что современные «традиционные» рекорды находятся в диапазоне 30-80 нанометров. Но тут стоит учесть, что это всего лишь пробный пуск. Американцы уверены – в будущем технология позволит поднять ставки до 5-10 нанометров.

В любом случае, превратив линзу в «иглу», учёные получили мощный инструмент, способный воспроизвести на вращающейся кремниевой подложке с фоторезистом самую изощрённую топографию интегральной схемы.

Матрица 4 х 4 из плазмонных линз под электронным микроскопом (иллюстрация Xiang Zhang Lab, UC Berkeley).

В головку «проигрывателя» теоретически можно упаковать до 100 тысяч линз, что позволит выполнять «гравировочные» работы любой сложности и на высокой скорости.

Пришлось преодолеть и кое-какие трудности. Поскольку поверхностные колебания затухают на расстоянии до 100 нанометров, резистивное покрытие должно быть расположено очень близко к линзе. Что не так просто устроить.

Ограничение удалось обойти с помощью опоры на воздушной подушке (air bearing) – это позволило поддерживать расстояние между двумя поверхностями около 20 нанометров.

«Это как если бы Boeing 747 должен был лететь на двухмиллиметровой высоте», — поясняет Сян Чжан. Отметим, что он очень ревниво относится к конкурирующим технологиям. По мнению профессора, они «напоминают улиток», а его разработка найдёт промышленное применение в течение трёх лет (максимум – пяти) и не ограничится плазмонными линзами.

Что ж, настрой у американца самый серьёзный: недавно мы уже писали о первом плаще-невидимке в области видимого спектра, разработанном в его лаборатории.



Оторванный скотч показал учёным рентгеновские лучи

23 октября 2008

Найдена причина поломки Большого адронного коллайдера

20 октября 2008

Пористые углеродные трубки показали интересные свойства

16 октября 2008

Открыты новый физический эффект и источник спинового напряжения

13 октября 2008

Учёные воспроизвели сверхпроводимость в тонких плёнках

10 октября 2008