В связи с голограммами наметились некие подвижки

В этой фигурке трудно распознать истребитель F-4 Phantom, однако разрешение и полный цвет – дело наживное. Главное, что сама технология передачи динамичных трёхмерных изображений работает как задумано (фото Gargaszphotos.com/University of Arizona).

Американцы утверждают, что осуществили прямую трансляцию подвижных голографических изображений, то есть широко шагнули в то самое будущее, где трёхмерная проекция человека на равных общается с живыми людьми. Учёные говорят, что успех им принесла технология, принципиально отличная от известных 3D-дисплеев, и деловито рассуждают о перспективах её применения. Всё это, впрочем, не мешает достигнутым результатам выглядеть более чем скромно.

Голографическое телеприсутствие (holographic telepresence) – это голография с постоянной и быстрой перезаписью изображения в реальном времени. Прогресса в развитии этой технологии добились профессор Нассер Пейгамбарян (Nasser Peyghambarian) и его коллеги из университета Аризоны. Учёные действовали в кооперации со специалистами из Nitto Denko Technical (калифорнийского подразделения японской корпорации Nitto Denko).

Новая система, по уверению её авторов, способна на частоту обновления изображения в один кадр за две секунды. Правда, в представленных роликах зрителям предложено рассматривать с разных точек зрения статичные кадры.

Может показаться, что невелика разница. Будь там хотя бы и серия кадров (по одному в пару секунд) — это всё равно смехотворно мало, ведь для нормальной видеоконференции нужны 30 кадров в секунду. Однако, чтобы оценить новое достижение в полной мере, нужно знать предысторию.

Команда продемонстрировала, что голографическое телеприсутствие обеспечивает картинке свойство полного параллакса: объект можно рассмотреть одновременно с разных сторон и каждый зритель видит свою сторону предмета (или человека). Всё это, разумеется, без всяких очков и систем отслеживания положения глаз зрителей (фото Pierre-Alexandre Blanche, Nasser Peyghambarian/Nature, Nitto Denko Technical).

Нынешние объёмные дисплеи – не важно, автостереоскопические или требующие специальные очки – выдают вполне реалистичное 3D-изображение заранее отснятых предметов, будь то трёхмерные фильмы, графика из игр и так далее.

Но при этом зритель, сместившись относительно центра экрана правее или левее хоть на 60-80 градусов, всё равно не сможет увидеть ухо смотрящего точно на него персонажа – просто потому, что с этой стороны объект не был записан.

Иное дело голограммы. Специальные пластинки, сохраняющие интерференционную картину, при правильном освещении воспроизводят верный поток лучей «от предмета» – с какой стороны на такой снимок ни посмотри. Так создаётся иллюзия трёхмерной копии вещицы в фотографической рамке.

Одно из преимуществ новинки – изображение записывается с одной стороны пластины, а просматривать его можно с другой. Стало быть, лазерную установку можно скрыть так, что несколько зрителей, расположившись вокруг экрана, будут видеть лишь иллюзорный трёхмерный объект.
Кстати, хотя в прототипе изображение монохромное, учёные уже экспериментируют с пластинами, которые позволят передавать по каналам связи и цветные голограммы (фото Pierre-Alexandre Blanche, Nasser Peyghambarian/Nature).

До голографического дисплея отсюда один логичный шаг: нужно сделать так, чтобы голограмму на пластине можно было быстро стирать и перезаписывать в реальном времени, да ещё по сигналу, передаваемому извне. Такой переход, однако, оказался технически не менее сложным вызовом, чем изобретение голографии самой по себе.

«Помоги мне, Оби-Ван Кеноби, ты моя единственная надежда!» О голографической системе из классических «Звёздных войн» (Star Wars) 1977 года (нижние кадры) вспоминают и сами авторы нынешнего устройства в своей статье в Nature.
В плане приближения эффекта к трёхмерным проекторам из легендарной киносаги со «скоростной» голограммой Нассера (красные снимки) могут сравниться разве что эксперименты с висящей в воздухе плазмой и быстро вращающимся зеркалом (кадры с сайтов technologyreview.com, maximumpc.com).

Для постоянной перезаписи нужны были материалы, быстро перестраивающие свою структуру в ответ на воздействие лазера. Подобрать их оказалось непросто. К примеру, в Массачусетском технологическом институте (MIT) систему с подвижными голограммами построили ещё в 1989 году.

Увы, изображение в ней занимало объём всего 25 кубических миллиметров. Это было бесконечно далеко от практического применения, а попытки нарастить размер дисплея пресекались ухудшением качества картинки и ростом сложности оптики, что ввергло сторонников голографических видеосистем в отчаяние.

Материал Пейгамбаряна и его коллег удостоен обложки ноябрьского номера Nature. Некоторые подробности технологии можно также узнать из пресс-релиза университета (иллюстрация Nature).

Основание для оптимизма появилось в 2007 году, когда Nitto Denko Technical при участии Нассера и ряда его коллег создала полимер (смотрите статью в Nature), способный играть роль голографической фотопластинки многократного действия.

Размер чувствительного материала достигал 10 х 10 сантиметров. При этом максимальный темп перезаписи изображения на такой пластине составлял один кадр за три-четыре минуты.

Образец многократно перезаписываемой голограммы 2007 года. Частота обновления раз в несколько минут не позволяет считать её подвижной (фото University of Arizona/Nasser Peyghambarian).

Ныне та технология существенно усовершенствована. Со слов одного из её авторов Пьера-Александра Бланша (Pierre-Alexandre Blanche), экран из нового фоторефрактивного материала способен обновлять голограмму каждые две секунды, что «делает его первым, который можно описать как систему с отображением в квазиреальном времени».

Начинается всё с 16 камер, полукругом стоящих вокруг объекта. Они снимают его с разных сторон. Компьютер проводит обработку данных и передаёт информацию, необходимую для создания голограммы, через цифровой канал в другую комнату (город, страну).

Там в дело вступает кодирующий импульсный лазер, вспыхивающий с частотой 50 герц при длине одного импульса в наносекунду. Его свет складывается с волнами от опорного лазера, а интерференционная картина запечатлевается на поверхности дисплея. При этом каждая вспышка лазера записывает один хогель, или гогель (hogel — сокращение от holographic pixel, голографический пиксель).

Упрощённый принцип записи голограммы: опорный луч (вверху) и объектный луч (внизу) через систему линз проецируются на фоточувствительный материал (оранжевая полоса), в котором волны смешиваются, а картина их интерференции записывается.
Освещение такой пластины опорным лучом позволяет восстановить трёхмерную картину, которую нёс луч объектный. Внизу: съёмка модели замка с новой системой (фото Pierre-Alexandre Blanche, Nasser Peyghambarian/Nature).

Происходит запись так. Полимерный композит сложного состава в новом экране зажат между двух прозрачных электродов. Когда свет от лазеров попадает на молекулы сенсибилизатора в составе композита, они создают разделение зарядов.

Полимер, подобранный учёными, намного лучше проводит положительные заряды, чем отрицательные, так что первые уходят прочь от места возникновения.

В свою очередь разделение зарядов создаёт электрическое поле, которое меняет ориентацию красного, зелёного и синего пигментов в составе композита. Теперь, когда хогель освещается внешним светом от светодиодов, он создаёт нужную точку в общей голограмме. А через пару секунд новая вспышка наносекундного лазера меняет хогель в соответствии со следующим кадром видео.

Одно из изображений, переданных новой установкой (слева), и прототип системы с экраном 12 х 12 дюймов (справа) (фото Pierre-Alexandre Blanche, Nasser Peyghambarian/Nature).

В качестве теста системы её авторы устроили видеоконференцию, в ходе которой голографическое изображение сотрудника Nitto Denko передавалось из Калифорнии в Аризону.

Поперечник экрана в нынешней установке составляет 10 дюймов (25,4 см), но авторы технологии уже тестируют большие пластины (вплоть до 17 дюймов). Скорость обновления изображения тоже может быть увеличена: для этого нужно модифицировать красители в полимере, чтобы они меняли своё состояние быстрее, а также перейти к лазерам, выдающим более короткие импульсы с большей частотой.

«Голографическое телеприсутствие означает, что мы можем записывать трёхмерные изображения в одном месте и воспроизводить их в любой точке мира в реальном времени», – говорит Нассер Пейгамбарян. До сих пор голографическая запись могла похвастать хорошим разрешением и глубиной изображений, но не динамикой (фото Norma Jean Gargasz/UANews).

Системы трёхмерной видеосвязи, игры и реклама — далеко не все направления, в которых пригодятся подвижные голограммы. К примеру, они очень понравятся медикам. Вокруг голографического пациента, лежащего на столе-дисплее, можно будет собирать консилиумы, в которых будут перемешаны участники, присутствующие живьём и находящиеся в других городах, хирурги смогут принимать дистанционное участие в операциях.

Ещё благодаря голограммам инженеры получат возможность с безопасного расстояния следить за ходом процессов на опасных производствах… Таковы перспективы новой системы, если учёным удастся нарастить размер, разрешение изображения и частоту кадров.



Японцы создали 3D-экран с передачей тактильных ощущений

27 августа 2010

Создана новая технология отображения 3D

17 августа 2010

Французы соединили мультиконтактный дисплей с 3D

12 августа 2010

На рынок выходит доступная 3D-видеокамера

28 июля 2010

Американцы превратили водопад в 3D-экран

2 июля 2010